用 python 实现各种排序算法

更新时间:2018-02-24 09:29:14点击次数:488次


总结了一下常见集中排序的算法

归并排序

归并排序也称合并排序,是分治法的典型应用。分治思想是将每个问题分解成个个小问题,将每个小问题解决,然后合并。

具体的归并排序就是,将一组无序数按n/2递归分解成只有一个元素的子项,一个元素就是已经排好序的了。然后将这些有序的子元素进行合并。

合并的过程就是 对 两个已经排好序的子序列,先选取两个子序列中最小的元素进行比较,选取两个元素中最小的那个子序列并将其从子序列中

去掉添加到最终的结果集中,直到两个子序列归并完成。

代码如下:

#!/usr/bin/python 
importsys 
    
defmerge(nums, first, middle, last): 
    ''''' merge ''' 
    # 切片边界,左闭右开并且是了0为开始 
    lnums=nums[first:middle+1]  
    rnums=nums[middle+1:last+1] 
    lnums.append(sys.maxint) 
    rnums.append(sys.maxint) 
    l=0 
    r=0 
    foriinrange(first, last+1): 
        iflnums[l] < rnums[r]: 
            nums[i]=lnums[l] 
            l+=1 
        else: 
            nums[i]=rnums[r] 
            r+=1 
defmerge_sort(nums, first, last): 
    ''''' merge sort
    merge_sort函数中传递的是下标,不是元素个数
    ''' 
    iffirst < last: 
        middle=(first+last)/2 
        merge_sort(nums, first, middle) 
        merge_sort(nums, middle+1, last) 
        merge(nums, first, middle,last) 
    
if__name__=='__main__': 
    nums=[10,8,4,-1,2,6,7,3] 
    print'nums is:', nums 
    merge_sort(nums,0,7) 
    print'merge sort:', nums

稳定,时间复杂度 O(nlog n)

插入排序

代码如下:

#!/usr/bin/python 
importsys 
    
definsert_sort(a): 
    ''''' 插入排序
    有一个已经有序的数据序列,要求在这个已经排好的数据序列中插入一个数,
    但要求插入后此数据序列仍然有序。刚开始 一个元素显然有序,然后插入一
    个元素到适当位置,然后再插入第三个元素,依次类推
    ''' 
    a_len=len(a) 
    ifa_len=0anda[j] > key: 
            a[j+1]=a[j] 
            j-=1 
        a[j+1]=key 
    returna 
    
if__name__=='__main__': 
    nums=[10,8,4,-1,2,6,7,3] 
    print'nums is:', nums 
    insert_sort(nums) 
    print'insert sort:', nums

稳定,时间复杂度 O(n^2)

交换两个元素的值python中你可以这么写:a, b = b, a,其实这是因为赋值符号的左右两边都是元组

(这里需要强调的是,在python中,元组其实是由逗号“,”来界定的,而不是括号)。

选择排序

选择排序(Selection sort)是一种简单直观的排序算法。它的工作原理如下。首先在未排序序列中找到最小(大)元素,存放到

排序序列的起始位置,然后,再从剩余未排序元素中继续寻找最小(大)元素,然后放到已排序序列的末尾。以此类推,直到所

有元素均排序完毕。

importsys 
defselect_sort(a): 
    ''''' 选择排序 
    每一趟从待排序的数据元素中选出最小(或最大)的一个元素,
    顺序放在已排好序的数列的最后,直到全部待排序的数据元素排完。
    选择排序是不稳定的排序方法。
    ''' 
    a_len=len(a) 
    foriinrange(a_len):#在0-n-1上依次选择相应大小的元素  
        min_index=i#记录最小元素的下标  
        forjinrange(i+1, a_len):#查找最小值 
            if(a[j]<a[min_index]): 
                min_index=j 
        ifmin_index !=i:#找到最小元素进行交换 
            a[i],a[min_index]=a[min_index],a[i] 
    
if__name__=='__main__': 
    A=[10,-3,5,7,1,3,7]   
    print'Before sort:',A   
    select_sort(A)   
    print'After sort:',A

不稳定,时间复杂度 O(n^2)

希尔排序

希尔排序,也称递减增量排序算法,希尔排序是非稳定排序算法。该方法又称缩小增量排序,因DL.Shell于1959年提出而得名。

先取一个小于n的整数d1作为第一个增量,把文件的全部记录分成d1个组。所有距离为d1的倍数的记录放在同一个组中。先在各组内进行排序;

然后,取第二个增量d2<d1重复上述的分组和排序,直至所取的增量dt=1(dt<dt-l<…<d2<d1),即所有记录放在同一组中进行直接插入排序为止。

importsys 
defshell_sort(a): 
    ''''' shell排序 
    ''' 
    a_len=len(a) 
    gap=a_len/2#增量 
    whilegap>0: 
        foriinrange(a_len):#对同一个组进行选择排序 
            m=i 
            j=i+1 
            whilej<a_len: 
                ifa[j]<a[m]: 
                    m=j 
                j+=gap#j增加gap 
            ifm!=i: 
                a[m],a[i]=a[i],a[m] 
        gap/=2 
    
if__name__=='__main__': 
    A=[10,-3,5,7,1,3,7]   
    print'Before sort:',A   
    shell_sort(A)   
    print'After sort:',A

不稳定,时间复杂度 平均时间 O(nlogn) 最差时间O(n^s)1<s<2

堆排序 ( Heap Sort )

"堆”的定义:在起始索引为 0 的“堆”中:

节点 i 的右子节点在位置 2 * i + 24) 节点 i 的父节点在位置 floor( (i - 1) / 2 ) : 注 floor 表示“取整”操作

堆的特性:

每个节点的键值一定总是大于(或小于)它的父节点

“最大堆”:

“堆”的根节点保存的是键值最大的节点。即“堆”中每个节点的键值都总是大于它的子节点。

上移,下移 :

当某节点的键值大于它的父节点时,这时我们就要进行“上移”操作,即我们把该节点移动到它的父节点的位置,而让它的父节点到它的位置上,然后我们继续判断该节点,直到该节点不再大于它的父节点为止才停止“上移”。

现在我们再来了解一下“下移”操作。当我们把某节点的键值改小了之后,我们就要对其进行“下移”操作。

方法:

我们首先建立一个最大堆(时间复杂度O(n)),然后每次我们只需要把根节点与最后一个位置的节点交换,然后把最后一个位置排除之外,然后把交换后根节点的堆进行调整(时间复杂度 O(lgn) ),即对根节点进行“下移”操作即可。 堆排序的总的时间复杂度为O(nlgn).

代码如下:

#!/usr/bin env python 
    
# 数组编号从 0开始 
defleft(i): 
    return2*i+1 
defright(i): 
    return2*i+2 
    
#保持最大堆性质 使以i为根的子树成为最大堆 
defmax_heapify(A, i, heap_size): 
    ifheap_size <=0: 
        return  
    l=left(i) 
    r=right(i) 
    largest=i# 选出子节点中较大的节点 
    ifl  A[largest]: 
        largest=l 
    ifr  A[largest]: 
        largest=r 
    ifi !=largest :#说明当前节点不是最大的,下移 
        A[i], A[largest]=A[largest], A[i]#交换 
        max_heapify(A, largest, heap_size)#继续追踪下移的点 
    #print A 
# 建堆   
defbulid_max_heap(A): 
    heap_size=len(A) 
    ifheap_size >1: 
        node=heap_size/2-1 
        whilenode >=0: 
           max_heapify(A, node, heap_size) 
           node-=1 
    
# 堆排序 下标从0开始 
defheap_sort(A): 
    bulid_max_heap(A) 
    heap_size=len(A) 
    i=heap_size-1  
    whilei >0: 
        A[0],A[i]=A[i], A[0]# 堆中的最大值存入数组适当的位置,并且进行交换 
        heap_size-=1# heap 大小 递减 1 
        i-=1# 存放堆中最大值的下标递减 1 
        max_heapify(A,0, heap_size) 
    
if__name__=='__main__': 
    
    A=[10,-3,5,7,1,3,7] 
    print'Before sort:',A 
    heap_sort(A) 
    print'After sort:',A

不稳定,时间复杂度 O(nlog n)

快速排序

快速排序算法和合并排序算法一样,也是基于分治模式。对子数组A[p...r]快速排序的分治过程的三个步骤为:

分解:把数组A[p...r]分为A[p...q-1]与A[q+1...r]两部分,其中A[p...q-1]中的每个元素都小于等于A[q]而A[q+1...r]中的每个元素都大于等于A[q];

解决:通过递归调用快速排序,对子数组A[p...q-1]和A[q+1...r]进行排序;

合并:因为两个子数组是就地排序的,所以不需要额外的操作。

对于划分partition 每一轮迭代的开始,x=A[r], 对于任何数组下标k,有:

1) 如果p≤k≤i,则A[k]≤x。

2) 如果i+1≤k≤j-1,则A[k]>x。

3) 如果k=r,则A[k]=x。

代码如下:

#!/usr/bin/env python 
# 快速排序 
'''''
划分 使满足 以A[r]为基准对数组进行一个划分,比A[r]小的放在左边,
   比A[r]大的放在右边
快速排序的分治partition过程有两种方法,
一种是上面所述的两个指针索引一前一后逐步向后扫描的方法,
另一种方法是两个指针从首位向中间扫描的方法。
''' 
#p,r 是数组A的下标 
defpartition1(A, p ,r): 
    '''''
      方法一,两个指针索引一前一后逐步向后扫描的方法
    ''' 
    x=A[r] 
    i=p-1 
    j=p 
    whilej < r: 
        ifA[j] < x: 
            i+=1 
            A[i], A[j]=A[j], A[i] 
        j+=1 
    A[i+1], A[r]=A[r], A[i+1] 
    returni+1 
    
defpartition2(A, p, r): 
    '''''
    两个指针从首尾向中间扫描的方法
    ''' 
    i=p 
    j=r 
    x=A[p] 
    whilei=xandi < j: 
            j-=1 
        A[i]=A[j] 
        whileA[i]<=xandi < j: 
            i+=1 
        A[j]=A[i] 
    A[i]=x 
    returni 
    
# quick sort 
defquick_sort(A, p, r): 
    '''''
        快速排序的最差时间复杂度为O(n2),平时时间复杂度为O(nlgn)
    ''' 
    ifp < r: 
        q=partition2(A, p, r) 
        quick_sort(A, p, q-1) 
        quick_sort(A, q+1, r) 
    
if__name__=='__main__': 
    
    A=[5,-4,6,3,7,11,1,2] 
    print'Before sort:',A 
    quick_sort(A,0,7) 
    print'After sort:',A

不稳定,时间复杂度 最理想 O(nlogn)最差时间O(n^2)

说下python中的序列:

列表、元组和字符串都是序列,但是序列是什么,它们为什么如此特别呢?序列的两个主要特点是索引操作符和切片操作符。索引操作符让我们可以从序列中抓取一个特定项目。切片操作符让我们能够获取序列的一个切片,即一部分序列,如:a = ['aa','bb','cc'], print a[0] 为索引操作,print a[0:2]为切片操作。


  • 项目经理 点击这里给我发消息
  • 项目经理 点击这里给我发消息
  • 项目经理 点击这里给我发消息
  • 项目经理 点击这里给我发消息